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SUMMARY 

This paper describes the extension of a purely two-dimensional finite element method for the calculation of 
transonic turbomachinery blade-to-blade flows to include the quasi-three-dimensional terms. These terms 
account for the effect of variations in streamline radius, stream-tube height and blade rotation. 

By approximating the stream surface as a piecewise linear function, then using a local developed cone 
transformation on an element basis, the finite element equations are shown to remain of the same form as the 
two-dimensional equations. 

The numerical results presented demonstrate that the stream-tube height, streamline radius and blade 
rotation terms must be included if the prediction of the Mach number distribution around a gas turbine blade 
is to be calculated correctly. 
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INTRODUCTION 

A commonly adopted procedure for the design of three-dimensional turbomachinery blades is that 
first proposed by Wu' involving two quasi-three-dimensional programs, namely a through-flow 
program together with a blade-to-blade program. The through-flow provides inlet and exit design 
conditions, e.g. Mach number and whirl angle, together with the streamline radius and stream-tube 
height variations. The individual blade sections are designed using a blade-to-blade method and 
then stacked to give a three-dimensional blade. 

It is known that the effects of stream-tube height variations through the blade row are important 
and that the effects of streamline radius variations are important for rotating blade rows; these 
effects must be included in any practical blade-to-blade method. 

A number of blade-to-blade methods exist based mainly on finite difference techniques, e.g. 
streamline curvature, matrix methods and time-marching. More recently finite element methods 
have been applied to the problem. These have been shown to be both economical and versatile in 
terms of the grid resolution that is possible. One area of importance is the blade leading edge where 
a rapid acceleration takes place and the geometry can have an important effect on the boundary 
layer behaviour. 
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The two-dimensional method described by Whitehead and Grant2 using a velocity potential has 
been shown to be fast and a~cura t e .~  In Reference 3 a full description of the method and the 
boundary conditions is given, It is shown that by using the upwinding technique or artificial 
compressibility described in Reference 3, the method can handle transonic and supersonic flows 
with shocks. 

This paper details the quasi-three-dimensional extensions to the method to include the effects of 
streamline radius, stream-tube height and rotation. It is shown that for a general axisymmetric 
stream-surface a local developed cone analysis can be adopted on an element basis. In the case of 
small elements and/or small cone angles the analysis relates closely to that for a two-dimensional 
plane surface. 

VELOCITY POTENTIAL FORMULATION OF THE QUASI-THREE- 

The quasi-three-dimensional blade-to-blade equations are obtained from the full three- 
dimensional equations by integrating from one axisymmetric stream-surface to a neighbouring 
one. The continuity equation for steady flow in a relative co-ordinate system rotating with the 
blade row can be written as 

DIMENSIONAL BLADE-TO-BLADE EQUATIONS 

where W,,, is the relative meridional velocity, W, the relative whirl velocity and p the density. The 
directions m, R and 6, and the stream-tube height h are defined in Figure 1. 

If it is assumed that rothalpy and entropy are constant on the stream surface, then Crocco’s 
equation shows that the flow is irrotational in an absolute frame of reference. Because of this a 

Figure 1. Quasi-3D stream surface 
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velocity potential (4) can be introduced, the absolute velocity (4) being defined as 

where 
4 = v 4  
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(2) 

The relative velocity is related to the velocity potential by 

W = V $ - Q ! x R  (3)  
where $2 is the rotational speed of the blades. The continuity equation may now be written in terms 
of velocity potential as 

As rothalpy is constant throughout the flow field, 

C,t + $4’ - QRq, = constant 

where C, is the specific heat at constant pressure, t is the static temperature and qe is the absolute 
whirl velocity. 

By assuming that the flow is that of a perfect adiabatic gas and relating the conditions to those on 
the inlet plane the density can be expressed as 

1Kr - 1) 
- Q2(R2 - R&)) 

where pOIN and COIN are, respectively, the relative stagnation density and sound speed at inlet. 
This equation shows the effect of blade rotation on the relationship between density and velocity 

on a stream surface of varying radius. 

SOLUTION PROCEDURE 

The velocity/density relationship (6) means that the continuity equation (4) is non-linear in velocity 
potential. Because of this a Newton-Raphson technique is used to solve the problem. At any stage 
a current approximation to the solution is denoted by an overbar. The difference between this and 
the correct solution is denoted by a prime, and it is assumed that these perturbations are small. 
Hence 

4=4+cb’ 
p = P + p ’  (7) 
qj = q i  + 4: 

Substituting into equation (1) and neglecting products of primed quantities gives 

V. h(p‘W + P W )  = - V.(hpW) (8) 
Similarly expanding equation (6) and neglecting second and higher order terms gives 

where 
w = V4’  
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FINITE ELEMENT DISCRETIZATION 

To obtain the discrete finite element equations the solution domain is first divided into elements 
over which the variations of the unknowns are prescribed in terms of nodal values using shape 
functions. In the present analysis the Galerkin weighted residual method is used. 

In a two-dimensional Cartesian co-ordinate system the division of the solution domain into 
elements is relatively easy, one of the simplest elements being a straight-sided triangle over which 
the velocity potential is assumed to vary linearly in the two co-ordinates. The linear variation of 
velocity potential results in the velocity, and therefore density, being constant over an element. The 
evaluation of integrals over the element is therefore tri~ial. ' .~ On a general axisymmetric stream 
surface the definition of an equivalent element is more complicated. Any three nodes on the surface 
would have to be joined by curves lying in the surface. The area of the stream surface bounded by 
such an element becomes complex to calculate. In addition integrals over the element are further 
complicated in the case of rotating blades, as both the relative velocity and density will vary with 
streamline radius over an element. Appendix I shows that if the streamline radius is defined from a 
through-flow analysis as a piecewise linear function along the machine axis (x) the stream surface 
can be approximated locally by part of a cone (Figure 8). This allows a local transformation onto a 
developed cone to be performed in order to define straight-sided triangular elements. The velocity 
potential varies linearly within each element on the transformed surface and it can be shown that 
the absolute velocity components will be constant over each element. However, the relative whirl 
velocity (W,) and consequently the density vary as functions of streamline radius. In Appendix I it 
is shown that if the change in streamline radius across an element is small, the expressions for 
element areas, shape functions and velocity components are the same as those for a two- 
dimensional plane surface but using m and R6 as co-ordinates. Therefore the shape functions may 
be written as 

# % a  + bm+ cRB (10) 

Applying the Galerkin weighted residual method to equation (8) for an internal node j gives 

where the summation is over every element containing the internal node 0') and Zn, j ,  is the shape 
function corresponding to element j .  If the velocity and density perturbations are written in terms 
of a perturbation to velocity potential then (dropping the overbar notation) 

where 

With blade rotation and variations in stream-tube height and streamline radius across an element 
an integration over an element would be complex. In Appendix I1 it is shown that if the variations 
in stream-tube height and streamline radius across an element are small then an accurate 
approximation to equation (12) is 

Where P,,, h",, and en are quantities evaluated at the centroid of the element. 
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The system of equations formed from (13) at each node gives a linear set of equations to be solved 
for 4’, the correction to velocity potential at each node. This forms an iterative procedure in which 
4 is replaced by 4 + 4’ on each iteration until convergence is achieved. 

This solution scheme converges for subsonic flows, but for transonic and supersonic flows it 
becomes unstable. In order to overcome this an artificial compressibility technique is adopted 
where the density used in each element is ‘upwinded’ if the local Mach number is supersonic. A full 
description of the method is given by Whitehead and N e ~ t o n . ~  

NUMERICAL RESULTS 

In Reference 3 the ability of the method to model transonic and supersonic flows with shocks is 
demonstrated. The following examples have been included to validate the quasi-three-dimensional 
extension to the method. 

(i) Turbine examples 

Figure 2 depicts the finite element mesh generated automatically to analyse the flow in a turbine 
c a ~ c a d e . ~ . ~  The cascade has flared endwalls resulting in a linear variation of stream-tube height, 

Figure 2. Finite element mesh used to analyse turbine tested in cascade ‘i 
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Figure 3. Comparison of predicted and measured Mach number distribution around turbine blade tested in cascade (inlet 
Mach number = 0.5, inlet angle = 38.8") 

h,/h, = 1.095. Figure 3 is a comparison of the Mach number distributions calculated using the 
finite element program FINSUP with experimental results. This shows very good agreement, the 
main area of difference being near the trailing edge on the suction surface. This is probably due to 
viscous effects not modelled in this version of FINSUP. 

Comparisons have been made using FINSUP and a streamline curvature method proven at 
Rolls-Royce for a turbine rotor of similar geometry to the one tested in cascade. Figure 4 shows the 
close agreement of the Mach number distributions where no variations in stream-tube or 
streamline radius are included. The Mach number distribution shown in Figure 5 is for the same 
blade and inlet conditions but with the inclusion of a variation in stream-tube height (h2/hl = 
1.091) and streamline radius ( R J R ,  = 1.015) obtained from a through-flow analysis. The blade 
has a rotation speed of 456.6 rad/s. Again excellent agreement between the two methods is 
obtained. A comparison of Figures 4 and 5 show that the addition of the quasi-three-dimensional 
terms has greatly changed the exit conditions from the blade row and thus the work performed. 
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Figure 4. Comparison of FINSUP and a streamline curvature method for turbine blade on a 2D stream surface (inlet Mach 
number = 0.273, inlet angle = 161") 
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Figure 5. Comparisonof FINSUP and a streamline curvature method for a turbine blade on a quasi 3D stream surface 
(inlet Mach number = 0.273, inlet angle = 16.1") 



108 R. D. CEDAR AND P. STOW 

Figure 6. Finite element mesh used to analyse BGK test blade 

(ii) Supercritical compressor 

There is currently much interest in the design of highly loaded shockless supercritical 
compressor blades with controlled suction surface diffusion. The Bauer, Garabedian and Korn 
(BGK) hodograph method can be used for the design of such blades. It is however two-dimensional 
and, consequently, if used in a design procedure an analysis program is required to study the 
sensitivity of the blades to inlet conditions and the quasi-three-dimensional effects. Figure 6 
depicts the mesh generated automatically using the geometry of the BGK test blade'. The 
calculated Mach number distribution (Figure 7) shows extremely good agreement with that used 
by the BGK method to produce the blades. The results are also shown for the same blade with a 
realistic variation of stream-tube height, streamline radius and blade rotation. It can be seen that 
the quasi-three-dimensional effects are significant and must be taken into account in a multi-stage 
compressor. 

CONCLUSIONS 
A finite element method for the calculation of transonic turbomachinery flows has been extended 
from a purely two-dimensional calculation, to include the effect of variations in streamline radius 
and stream-tube height, and blade rotation. By approximating the stream surface as a piecewise 
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Figure 7. Predicted Mach number distribution around BGK test blade (inlet Mach number = 0.72, inlet angle = 45.9") 

linear function, then using a local developed cone transformation on an element basis the 
equations for element areas, shape functions and velocity components are shown to remain of the 
same form as for a two dimensional calculation. If the changes in stream-tube height and 
streamline radius across an element of the mesh are assumed to be small then the integrals 
occurring in the finite element analysis may be accurately approximated using element centroid 
values. In current blade designs this presents no limitations. 

Numerical results have been presented showing the importance of the quasi-three-dimensional 
terms. These demonstrate that the stream-tube height, streamline radius and blade rotation terms 
must be included if the Mach number distribution around a gas turbine blade is to be predicted 
correctly. 
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APPENDIX I. LOCAL DEVELOPED CONE ANALYSIS 

It is assumed that the streamline radius is obtained from a through-flow calculation and is defined 
as a piecewise linear function in the direction of the machine axis (x). The stream surface covered by 
a curvilinear triangular element can therefore be approximated locally by part of a cone (Figure 8), 
the cone semi-angle (y) being determined from the stream-surface definition and meridional co- 
ordinate. 

For two nodes A and B on the stream-surface 

If A and B lie on one linear part of the stream-surface then 

mn - mA = mg - mX (15) 

where m* is measured along a generator of the local approximating cone from the apex. The local 
developed cone transformation is applied to each element in terms of co-ordinates m* and $, where 
$ is defined by 

m*$ = R(O - 0 A )  (1 6) 

A being a node of the element (Figure 9). 

0 b -x 

Figure 8. Approximation of stream surface locally by part of a cone 

\ m* = CONSTANT 't 
~~A~ B 

/ 

Figure 9. Development of a local cone 
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Elements 

The transformation maps nodes A, B and C of the elements onto the development of the local 
cone. In this plane the sides of the element are straight lines. It is convenient to introduce a local 
Cartesian co-ordinate system defined by 

x = m" cos II/ 
y = m* sin II/ 

The area of triangular element ABC is 

For small elements and/or small cone semi-angles differences in II/ over an element will be small. 
Using equation (16) it can be shown that 

' 1  
This is the same as in a strictly two-dimensional analysis but using m and R$ as co-ordinates. 

Velocity components 

Over an element the velocity potential is bilinear, i.e. 

# = a  + bx + cy 

In terms of nodal values 

where Z ,  the shape function, is linear in x and y .  In an element 

8 4  az. 1 
- = C 4 . 2  = - C 4 i ( y j  - yk) = constant ax i ' d x  2A i 

a# dZi - 1  
- = C #i-- = -C #i(xj  - xk) = constant 
dy i dy 2A i 

The absolute meridional and whirl velocities are defined as 

qm=(2) 8 

qB=z 3% ' 
For small elements and/or small cone semi-angles it can be shown that 

1 
qnZ 2~ #iC(Ro)j - (~$1, - (mj* - m,*)B sin YI 
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In the applications considered 

so that 
(mj* - m$)6 sin y G - (RB), 

1 
4,,, % GT q5i((R6)j - (R6),) = constant 

Similarly 
-1 
2A i 

4 0  % ~ 1 q5i(mj - mk) = constant 

Summary 

(i) By approximating the streamline radius by a piecewise linear function the axisymmetric 
stream surface is approximated by series of cones. 

(ii) For elements a local developed cone transformation can be adopted in order to define 
elements, calculate areas and shape functions. 

(iii) It is shown that for small elements and/or small cone semi-angles the expressions for element 
areas and absolute velocity components are the same as those for a two-dimensional plane 
surface but using m and RB as co-ordinates. In particular the meridional and absolute whirl 
velocity components are constant over an element. 

APPENDIX 11. USE OF QUANTITIES EVALUATED AT THE ELEMENT CENTROIDS 

In the application of the Galerkin weighted residual method to the stream-tube averaged 
continuity equation (12) it is necessary to evaluate integrals of the forms 

From Appendix I 

W, = qm = constant 
W, = 4, - SZR = constant - SZR 

The variation of density with streamline radius is given by equation (6). In order to perform the 
integration an expansion technique about the value at the centroid of the element is used. The 
streamline radius is written as 

R = ~ + R *  (30) 
where 
define mean values of W, and p as follows 

is the radius at the centroid of the element. The value of the element mean radius is used to 

w, = @,(l + W,*) 
where 

-1  
2A i 

= -1 +,(mj - m,) - SZR = constant 
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and 
- LRR* wg=- = constant x R* 

f% 

In a similar fashion 

P = a1 + P* )  

where, from equation (6) 

= constant 

and 
Q2RR* 

r 2  + higher order terms 
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(33) 

(34) 

(35) 

where it has been assumed that R* is small in the expansion of equation(6). As aZ,/dm and 
dZ,/RdB are constant over an element (see Appendix I) we can write 

where 
r , = r " , + I :  (37) 

and 

( p* + + W l  ) d A ] (39) 

Since R and h are assumed to be piecewise linear then 

I T = O  (40) 

to the order considered. This means that the integral I , ,  in equation (27) can be evaluated using 
quantities at the centroid of the element. 

A similar analysis would show that I ,  in equation (28) can also be evaluated using quantities at 
the centroid. It can be shown that the neglected terms in the expansion are proportional to 
(m - &)' (dh/drn)2 and (m - Ei)' dR/dm.dh/dm, both of which in general will be very small. 

Summary 

In the case of no rotation, the meridional and whirl velocity components and density are 
constant over an element. In evaluating the integrals over an element, the stream-tube height can 
be replaced by the value at the centroid of the element. 

In the case with rotation, the meridional component of velocity is constant over an element, but 
both whirl velocity and density vary. In the evaluation of the integrals over an element, quantities 
can be replaced by their values calculated at the centroid of the elements. 

It should be noted that the assumptions made in Appendix I of changes in stream-tube height 
and streamline radius being small over an element are also made in this analysis. 
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